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Simulation studies are presented that probe the possibility of using high-field ��100 kV/cm�, short-duration
��50 ns� electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways.
This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation thera-
pies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high
density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and
presents an effective “electrical short” to an incident voltage wave traveling across a nerve. Net blocking of
action potential propagation can then result. A continuum approach based on the Smoluchowski equation is
used to treat electroporation. This is self-consistently coupled with a distributed circuit representation of the
nerve dynamics. Our results indicate that poration at a single neural segment would be sufficient to produce an
observable, yet reversible, effect.
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I. INTRODUCTION

It is well known that the application of electrical voltages
�both dc and high-frequency� or, equivalently, the use of ex-
ternal current injection and extraction can reversibly block
the conduction of action potentials across nerves �1–7�.
Though other methods of achieving nerve conduction block-
age such as pressure application �8�, temperature lowering
�9�, and chemical and pharmacological means �5� exist, none
can be as quick acting, localized, and yet reversible as elec-
trical stimulation. Cessation of biological electrical signaling
pathways can have a variety of applications in neurophysiol-
ogy, clinical research, neuromuscular stimulation therapies,
and even nonlethal bioweapons development. For example,
pudendal nerve conduction block during micturition can re-
duce urethral pressure �10,11� or help relieve chronic pain
from a site of peripheral nerve injury �12�. It is well known
that the nerve blocking ability of electrical stimulation is
progressive from larger to smaller fibers �13,14� and has
been used to activate muscles in a physiological recruitment
order and to reduce muscle fatigue. The concept of arresting
action potential �AP� propagation on command through ex-
ternal electrical stimulation could open up the possibility of
temporary incapacitation with applications to crowd control.

The generation and propagation of an action potential in a
nerve fiber is triggered by perturbations in trans-membrane
potential that activate ionic flows through voltage-gated so-
dium and potassium channels. Dynamical details and math-
ematical analyses of the various ionic currents across the cell
membrane can be obtained from the Hodgkin-Huxley �15�
and Huxley-Frankenhaeuser �16� models for unmyelinated
and myelinated nerves, respectively. Action potential genera-
tion and propagation requires the attainment of a trans-
membrane voltage shift that exceeds a threshold level
�17–20�.

Since a threshold shift is a necessary requirement to ini-
tiate and maintain electrical propagation through a nerve fi-

ber, any event that disrupts the trans-membrane voltage can
potentially impede action potential propagation. One possi-
bility is through the application of an external dc bias near a
nerve. For a propagating action potential �initiated, for ex-
ample, by a depolarizing voltage�, the application of a posi-
tive bias on the outer region of the nerve would prevent the
local potential from reaching the requisite negative value.
This would effectively arrest AP propagation and hence, in
theory, block nerve conduction. However, a number of po-
tential and practical problems arise from the application of
an external dc bias for purposes of a conduction block. �i�
First, prolonged application of the dc bias can itself inject
localized currents and charge the axonal membranes, thereby
launching its own AP. The duration and amplitude of the
external dc have to be sufficiently low to circumvent such
“self-launch” phenomena. �ii� In addition, since the timing
and sequence of propagating action potentials are not known
a priori, it is practically very difficult to achieve reliable
conduction blockages for all possible propagating APs. �iii�
Any sharp rise times for the dc biasing voltages can lead to
large capacitive charging currents that have a similar unde-
sirable effect of self-launching an AP. Hence, the rise and fall
times of any applied dc bias need to be sufficiently large. �iv�
Long durations or repetitive dc biasing can potentially cause
tissue damage due to internal heating �21�. For effective sup-
pression of this deleterious effect, the net energy needs to be
sufficiently small.

The application of high-frequency blocking signals allevi-
ates some of the problems with dc biasing. Heat generation
can be reduced and the biphasic signals make it somewhat
more difficult to self-launch action potentials. However, the
overall difficulties are not eliminated and the fundamental
issues remain. In addition, the frequency of operation begins
to play an important role in the blocking effectiveness. A
frequency bandwidth limitation for AP extinction exists, and
excitation that is either too fast or too slow cannot provide a
conduction block �3�. This is easily understood from the

PHYSICAL REVIEW E 75, 061906 �2007�

1539-3755/2007/75�6�/061906�11� ©2007 The American Physical Society061906-1

http://dx.doi.org/10.1103/PhysRevE.75.061906


standpoint of having to cause sufficient disruption of the
trans-membrane potential during the time an incident AP
approaches the “blocking spot.” A very-low-frequency bias
signal will not have sufficient time to disrupt an approaching
action potential, while a very fast oscillatory signal will ef-
fectively present a net zero average perturbation. Further-
more, the continuous ac signal contributes to localized heat-
ing. For these above reasons, the use of ac biasing techniques
for AP suppression is not really an optimal solution. Though
various different wave forms and electrode arrangements
have been proposed �22,23�, the underlying problems re-
main.

Almost all modeling and experimental work relating to
AP conduction blocking �whether dc or high-frequency� has
been performed at relatively low voltage amplitudes with
temporal durations in the microsecond range or higher. How-
ever, the use of electric pulses with very high fields
��100 kV/cm or higher� and pulse durations in the nanosec-
ond range �24–26� has been a very recent development in
bioelectrics. From a practical standpoint, such high-intensity,
short-duration electrical pulses �HISDEPs� have been shown
to be useful for various biological applications ranging from
cellular electroporation �27�, electrically triggered intracellu-
lar calcium release �28,29�, the destruction of micro-
organisms �27,30,31�, killing of tumor cells �27,32�, DNA
damage �33�, and possibly wound healing �34,35�. The hall-
mark of such a HISDEP is the creation of a high density of
nanometer-sized pores on the cellular membrane, followed
by their recovery through resealing. This has been confirmed
by analytical calculations �36–39� as well as molecular dy-
namic simulations �40–42� and verified by tracking fluores-
cent dyes in flow cytometry experiments �27�. Typical pore
diameters are on the order of 1.6 nm with about a 0.6-nm
statistical spread. Time scales for pore resealing range from
milliseconds to a few seconds �36,43–47� with the dynamical
details depending on parameters such as cell diameter, ap-
plied electric field magnitude, permittivities, and membrane
tension.

Here we discuss and analyze the possibility of applying
such HISDEPs for blocking nerve conduction by modulating
the membrane conductivity through the electroporation pro-
cess. Such a study has not been presented to the best of our
knowledge, though simple considerations of electroporation
in the context of ventricular muscle breakdown were re-
ported �48�. Formation of a high pore density would increase
the local membrane conductivity and effectively “short-out”
the trans-membrane potential of a nerve in the vicinity of the
pulsing electrode. The net effect would be a disruption in the
requisite trans-membrane potential shift required to sustain
AP propagation. The use of an HISDEP in conduction block
context would conceivably offer the following advantages:
�a� negligible heating, due to the low energy content of each
pulse. This would minimize any possible tissue damage and
allow repetitive pulsing �even multiple firings with tailored
amplitudes� to achieve the desired effects for selected dura-
tions. �b� The effects of such HISDEPs would be reversible
due to the resealing of pores created electrically by the ex-
ternal voltage. Hence, a permanent effect would be avoided.
�c� The turn-on would be relatively fast �on the order of tens
of nanoseconds �36��, and the effect could be spatially tai-

lored. �d� Unlike the dc or ac excitation, it would be more
difficult to “self-launch” action potential waves, which re-
quired depolarization over microsecond time scales or
longer. The porated regions of the membrane would effec-
tively clamp the local trans-membrane potential to near-zero
values. Also, the nanosecond pulse termination would pro-
duce a negative voltage change with time and, hence, a
strong negative displacement current. This would cause the
membrane potentials to fall sharply back to their resting po-
tentials well before the microsecond time scales that are typi-
cally required for launching action potentials.

The mathematical details and quantitative analyses of
such AP blockage in response to a HISDEP are modeled and
simulated. The primary thrust of our contribution is on an
unexplored aspect of nanosecond, high-intensity electric
pulses with potential applications to disruption of neural traf-
fic. Theoretical analyses and predictions are presented here
as a first step. We hope to discuss detailed experimental data
elsewhere from studies already underway within our group.
Experimental details and many of the practical issues have
thus not been discussed here. For self-consistency, pore for-
mation dynamics and the resulting evolution in membrane
conductivities fashioned by a nanosecond-duration, high-
voltage pulse are first calculated. These are then embedded
into a McNeal-type cable model �49� for electrical conduc-
tion along a nerve. A cylindrical geometry with a constant
cross section has been assumed for simplicity without com-
promising the qualitative physics. An additional shunt mem-
brane conductance in parallel to the ionic channel currents is
included to account for the time-dependent flow through the
electropores.

II. SIMULATION DETAILS

A. Cable model of nerve propagation

The theoretical basis for modeling electrostimulation of
excitable nerve tissues is briefly discussed to highlight the
changes necessary for incorporating the effects of electropo-
ration. Electrical propagation in nerves was first discussed by
Cooley and Dodge �50� and later by McNeal �49� and Rattay
�51� based on a distributed, transmission-line model. In a
one-dimensional treatment, the entire nerve is discretized
spatially into nodes as shown in Fig. 1 and the trans-
membrane potential at any time for a given node n expressed
as

�Vi−1�t� − Vi�t��/Ra − �Vi�t� − Vi+1�t��/Ra + Iinj�t� − Ich�t�

= d�Cm�t�Vi�t��/dt , �1�

where Vi�t� is the net trans-membrane potential at node i, Ra

the effective axonal resistance, and C�t� the effective time-
dependent membrane capacitance that incorporates dynamic
pore formation. Iinj�t� and Ich�t� denote the injected stimulus
current that initiates a propagating action potential and mem-
brane channel current, respectively, at node i during time
instant t. As shown in Fig. 1, the channel current at any node
i consists of the usual sodium and potassium ionic currents
through voltage-gated channels and a leakage contribution
given mathematically as �15,16�
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Ich�t� = gNami
3�t�hi�t��Vi�t� − VNa�t�� + gKn1

4�t��Vi�t� − VK�t��

+ gL�Vi�t� − VL�t�� + Gsh�t�Vi�t� , �2�

where gNa and gK are the sodium- and potassium-channel
conductances, while VNa�t� and VK�t� denote the resting po-
tentials. In order to account for the effects of electroporation,
an additional time-dependent shunt conductance Gsh�t� has
been included in Eq. �2� and placed as a parallel element in
the circuit of Fig. 1. The terms mi�t� and hi�t� represent the
time-varying switching variables for the activation and deac-
tivation of sodium channels across the membrane at the ith
discrete location, while ni�t� denotes the potassium channel
activating switch.

Strictly, ionic transfer across the membrane is a stochastic
process �52�, and individual channels randomly transition be-
tween open and closed states. These rates of transition are
voltage dependent, leading to a net change in ionic transport
upon electrical stimulation. The collective macroscopic be-
havior, however, can be expressed in terms of a continuum
time-dependent model for all channels. Such a global ap-
proach, first suggested by Hodgkin-Huxley �15� for unmyeli-
nated nerves, has been used here and leads to the following
dynamical equations for the switching functions m�t�, h�t�,
and n�t�:

d�mi�t��/dt = �m�t��1 − mi�t�� − �m�t�mi�t� , �3a�

d�ni�t��/dt = �n�t��1 − ni�t�� − �n�t�ni�t� , �3b�

d�hi�t��/dt = �h�t��1 − hi�t�� − �h�t�hi�t� . �3c�

In Eq. �3� above, the voltage-dependent transition rates �m,n,h
and �m,n,h are given as

�m�t� = ��T��2.5 − 0.1Vi�t��/�exp�2.5 − 0.1Vi�t�� − 1� ,

�4a�

�n�t� = ��T�0.1�1 − 0.1Vi�t��/�exp�1 − 0.1Vi�t�� − 1� ,

�4b�

�h�t� = ��T�0.07�exp�− Vi�t�/20�� , �4c�

�m�t� = ��T�4�exp�− Vi�t�/18�� , �4d�

�n�t� = ��T�0.125�exp�− Vi�t�/80�� , �4e�

�h�t� = ��T�/�exp�3 − 0.1Vi�t�� + 1� , �4f�

and

��T� = 3�T−6.3�/10, �4g�

where T is the temperature in degrees centigrade. Due to
external voltage pulsing, each node voltage Vi�t� is time de-
pendent, and hence, the transition rates also become dy-
namic. For numerical stability and accuracy, the implicit
centered-difference scheme �50� can be used for updating the
functions mi�t�, ni�t�, and hi�t� at each succeeding time step.
This, for example, leads to the following discretized equation
for mi�t+�t� after a time step �t:

mi�t + �t� = mi�t� + ��t/2���m,i�t��1 − mi�t�� + �m,i�t + �t�

− �m,i�t�m,i�t��/�1 + ��t/2���m,i�t + �t�

+ �m,i�t + �t��� . �5�

B. Membrane electroporation effects

The above set of equations �1�–�5� yields time-dependent
voltages at each nerve node and constitutes the usual ap-
proach for analyses of propagating action potentials. The ap-
plication of a HISDEP leads to nanopore formation on the
cylindrical membrane surface as sketched in Fig. 2. As a
result, the traditional cable model needs to be modified to
take account of the increased membrane conductance �the
Gsh�t� term of Eq. �2�� and the altered membrane capacitance
�the Cm�t� term of Eq. �1��. These parameters characterizing
the electrical response are, in general, dictated by the number
of pores �conduction pathways� formed for a given voltage
amplitude and pulse duration. Hence, the foremost task is the
evaluation of the time- and voltage-dependent pore density.
The dynamics of pore creation and destruction have been
well characterized by continuum approaches based on the
Smoluchowski equation �36–39,53–62�, though rigorously
microscopic molecular-dynamics �MD� treatments are more
accurate. However, given the computational complexity and

FIG. 1. Schematic of the cable model used to represent a nerve
fiber.

FIG. 2. Sketch of pores created on the nerve membrane by the
external voltage. A differential dx of the nerve fiber is shown, and
the external field is normal to the longitudinal axis.
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large memory requirements of the MD technique, a mean-
field continuum numerical model will be adopted here.

The mathematical equation governing the pore dynamics
based on the continuum Smoluchowski theory is given in
terms of the pore density distribution function n�r , t� as

�n�r,t�/ � t − �D/�kBT�����n�r,t� � E�r�/ � r�/ � r�

− D��2n�r,t�/ � r2� = S�r� , �6�

where S�r� is the source �or pore formation� term, D is a pore
diffusion constant, T is temperature in Kelvin, and kB the
Boltzmann constant. The process of diffusion represents a
“random walk” of the pore radius in “r space.” Physically,
this is brought about by fluctuations in the radius in response
to water molecules and other species constantly entering and
leaving the pores. Two types of pores �hydrophilic and hy-
drophobic� are known to exist �58,63,64�. The formation of
pores is generally assumed to be a two-step process. All
pores are initially created as hydrophobic and nonconducting
at a rate S�r� per unit area of the membrane, during every
time interval dt. This rate is given by

S�r� = ��vch�/�kBT���dE�r�/dr�exp�− E�r�/�kBT��dr , �7�

where vc is an attempt rate density �52�, E�r� the energy for
hydrophobic pores, T the operating temperature, and kB the
Boltzmann constant. This assumes that the use of a kinetic
collisional theory remains valid for nongaseous phases as
well. If a nonconducting pore is created with a radius r�r*

�=0.5 nm�, it spontaneously changes its configuration and
transforms into a conducting, hydrophilic pore. All conduct-
ing pores then survive as long as their radii remains larger
than r*. Destruction of a conducting pore occurs only if it
drifts or diffuses in r space to a value below r*. Due to the
exponential term in Eq. �7�, most pores are created with very
small radii.

Each of the two pore types is characterized by an energy
of formation, E�r�, which is a function of the pore radius r.
The energy function E�r� determines the “drift flux” for
pores in r space and, therefore, governs the growth or con-
traction of pores at any given radius r. This function E�r�
depends on several factors, including the membrane tension,
the applied voltage and associated stored electrostatic energy,
and steric repulsion. The published and accepted model for
E�r� provides the following pore energy function
�53,63,65,66�:

E�r� = 2�hr�����I1�r/r0�/I0�r/r0�� − ��pV2r2 �8a�

and

E�r� = 2�	r − �	
0

r

2�
�r*�r*dr*
 + �C/r�4 − ��pV2r2,

�8b�

for hydrophobic and hydrophilic pores, respectively. In the
above, I1 and I0 are the modified Bessel functions of the
zeroth and first order, respectively, h is the membrane thick-
ness, ���� is a constant on the order of 5�10−2 N m−1 �65�,
while r0 represents a characteristic length scale over which

the properties of water change between the interface and the
bulk. The value of r0 is taken to equal 1 nm �58�. The �C /r�4

term in Eq. �8b� accounts for steric repulsion between the
lipid heads lining the pore and contributes to an increase in
energy with shrinking radius �58,67�. A typical value for C
has been reported to be about 9.67�10−15 J0.25 m �58�. The
last term in Eq. �8b� represents the capacitive contribution to
the energy in the presence of a trans-membrane potential V.
The coefficient ap is a property of the membrane and its
aqueous environment. In the simplest continuum approxima-
tion �65�, it is expressed in terms of the membrane thickness
h and the permittivities �w and �m of water and the mem-
brane, respectively, as ap= ��w−�m� / �2h�. It might be men-
tioned that other models that take into account pore conduc-
tivity and ionic distortions of the electric field �54,59� have
been proposed for the electrostatic energy calculations. Fi-
nally, 	 is the energy per unit length of the pore perimeter,
while 
 is the energy per unit area of the intact membrane.
Most analyses in the literature �58� use a constant surface
tension parameter �
=
0�, yielding the following simplified
formation energy expression for conducting pores:

E�r� = 2�	r − �
0r2 + �C/r�4 − ���w − �m�/2h��r2V2,

�9�

though more complex dynamic extensions have been re-
ported �39�.

The above set of equations provides for an evaluation of
the pore probability density distribution n�r , t� at each time
step, in response to a given time-dependent trans-membrane
potential V�t�. The total number of pores, N�t�, can then be
obtained from the density function n�r , t� as N�t�=�0

�

n�r , t�dr. Similarly, the average pore radius �r�t�
 at any time
instant is then �r�t�
= ��0

�rn�r , t�dr� / ��0
�n�r , t�dr�. Pore cre-

ation also changes the membrane capacitance since water is
able to enter the aqueous pathways in the membrane and
alter the local permittivity. In this context, the effective ca-
pacitance Cm�t� per unit longitudinal distance dz is given as

Cm�t� =
�wAp + �mAmem

h

=
�w

h �dz	
0

�

�Ri + Ro�d
	
0

�

n�r,
,t�dr

+

�m

h ���Ri + Ro�dz

− dz	
0

�

�Ri + Ro�d
	
0

�

n�r,
,t�dr
 , �10�

where Ap and Amem are the pore area and membrane surface
area, respectively, while Ri and Ro are the inner and outer
radii of the nerve fiber �membrane thickness h=Ro−Ri�.

C. Membrane potential calculations for electroporation

The problem of determining the number of pores on the
nerve membrane that facilitate conduction and, hence, con-
trol the Gsh of Eq. �2� can be completely resolved provided
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the time-dependent trans-membrane potential that drives
pore creation is known. Towards this end, the following ap-
proach based on a time-dependent solution was adopted for
calculations of the trans-membrane potential. The external
electric field F�t� was taken to be time dependent, allowing
for the exact modeling of actual external pulsed wave forms.

An approach for calculating the trans-membrane potential
is through a time-domain nodal analysis involving a distrib-
uted equivalent circuit representation of a cell and its mem-
brane structures. The dynamic membrane electric field can
then be obtained from the time-dependent trans-membrane
voltage. Details of this method applied to spherical cell and
its implementation have been given elsewhere �38,41�, and
hence, only a brief outline will be discussed here. Essentially,
the entire cell volume was broken up into finite segments,
and each segment represented by a parallel RC combination
to account for the current flow and charging effects. The
computational region was a cylinder that included the cell,
its sub structure, and surrounding suspension medium, dis-
cretized along the r and 
 directions as shown in the cross
section of Fig. 3. Longitudinal �z-directional� symmetry was
used to discard the z coordinate, while retaining only the
radial �r� and angular �
� coordinates of a cylindrical system.
For simplicity, the plasma membrane was taken as an inte-
gral unit; i.e., this subregion was not further discretized.
Boundary nodes are treated separately. For interior nodes, the
current continuity equation is of the form

�
k=1

6 ��E + �
�E

�t



k
Ak = �

k=1

6

Ik = 0, �11�

where I5 and I6 are currents along the z direction, Ak the
surface area, E the electric field, � the permittivity, and � the
conductivity. Considerations of geometric symmetry of the
computation region lead to I5= I6=0 due to the equipoten-
tials. In order to reduce the computation load, only a quarter
of the entire spherical computational region was considered
based on the inherent symmetry. Nodes with j=0 and j=m
had to be treated carefully. Only I1, I2, and I4 are nonzero
since the targeted element only has five faces as face 3
shrinks to a line. For j=0 and 0� i�n, Eq. �11� effectively
becomes

�1
Vi−1,j

t − Vi,j
i

�r
A1 + �2

Vi+1,j
i − Vi,j

t

�r
A2 + �3

Vi,j−1
t − Vi,j

t

r�

A3

+ �4
Vi,j+1

t − Vi,j
t

r�

A4 +

�1

�t
�Vi−1,j

t+1 − Vi,j
t+1

�r
−

Vi,1,j
t − Vi,j

t

�r

A1

+
�2

�t
�Vi+1,j

t+1 − Vi,j
t+1

�r
−

Vi+1,j
t − Vi,j

t

�r

A2 +

�3

�t
�Vi,j−1

t+1 − Vi,j
t+1

r�


−
Vi,j−1

t − Vi,j
t

r�


A3 +

�4

�t
�Vi,j+1

t+1 − Vi,j
t+1

r�

−

Vi,j+1
t − Vi,j

t

r�


A4

= 0. �12�

Here A1= �r+�r /2��
�z, A2= �r−�r /2��
�z, and A3=A4

=�r�z. Putting A1–A4 into Eq. �2�, we get

�1
Vi−1,j

t − Vi,j
t

�r
�r + �r/2��
 + �2

Vi+1,j
t − Vi,j

t

�r
�r − �r/2��


+ �3
Vi,j−1

t − Vi,j
t

r�

�r + �4

Vi,j+1
t − Vi,j

t

r�

�r

+
�1

�t
�Vi−1,j

t+1 − Vi,j
t+1

�r
−

Vi−1,j
t − Vi,j

t

�r

�r + �r/2��


+
�2

�t
�Vi+1,j

i+1 − Vi,j
t+1

�r
−

Vi,1,j
t − Vi,j

t

�r

�r − �r/2��


+
�3

�t
�Vi,j−1

t+1 − Vi,j
t+1

r�

−

Vi,j−1
t − Vi,j

t

r�


�r

+
�4

�t
�Vi,j+1

t+1 − Vi,j
t+1

r�

−

Vi,j+1
t − Vi,j

t

r�


�r = 0. �13�

In the above, Vi,j
t stands for the potential at node �i , j� at time

t with i=0,1 . . . ,n and j=0,1 , . . . ,m. For an electric field
applied along the r direction, potential at node with i=n is
zero. Another boundary condition to be considered is for
nodes with i=0. The potentials of such nodes are calculated
as V0,j =−E0R cos 
, for j=0, . . . ,m, where E0 is the exter-
nally applied electrical field and R the radius of the compu-
tational region.

Combining with the boundary conditions discussed
above, one gets N equations for the N unknown node volt-
ages. These N equations can easily be solved by any linear
equation solver. Potentials on each node are easily updated at

FIG. 3. Schematic of one-quarter of the model used to represent
a cable model of a nerve cell for the distributed electrical calcula-
tions. The dotted box shows a typical element with current flows.
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every time step based on the value of the externally applied
field.

D. Pore-facilitated membrane conductivity

Membrane conductivity is modulated by pore formation
and qualitatively depends on the number of pores, their ef-
fective radii, the energy barrier to flow produced by the ionic
interactions between the pore and surrounding dielectric, and
the spreading resistance. Treatments of pore conduction have
been described in the literature �36,65,68�. While the treat-
ment given below was originally discussed in the context of
pulses longer than the nanosecond range, the basic physics of
transport over a voltage-dependent barrier and pore conduc-
tivity holds true regardless. As long as the transmembrane
potential is suitably calculated and applied, the expressions
given next remain valid. Following Glaser et al. �65�, the
pore conductivity Gpore was taken to be

Gpore�t� = �R0
2HN�t��exp�U�t�� − 1���U�t�	

0

h

dx exp�U�t�

��1 − x/h� + W�x�/kBT�
 , �14�

where U�t�= �V�t�*q� / �kBT�, q being the electronic charge, H
the conductivity of the aqueous solution, V�t� the time-
dependent trans-membrane potential, h the membrane thick-
ness, N�t� the number of pores, and W�x� the energy barrier
for an ion inside the pore. The W�x� profile has a trapezoidal
shape �65,69� with a linearly varying region of thickness d at
the two ends of the pore and a constant value of W0 over the
central pore region. Thus, mathematically the profile of W�x�
is

W�x� = W0 for d � x � �h − d� , �15a�

W�x� = W0x/d for 0 � x � d , �15b�

and

W�x� = W0��h − x�/d� for �h − d� � x � h . �15c�

Typically W0 is much larger than the thermal energy kBT, and
under these conditions, the pore conductivity simplifies to

Gpore�t� = Lz	
0

�

d
	
0

�

�n�r,
,t�dr r2HD/h�/��1 + P�t��

�exp�W0/�kBT� − �U�t�� − P�t�� , �16�

where P�t�= ��U�t�� / �W0 / �kBT�−�U�t��, �=d /h is a mea-
sure of the relative size of the pore, D the diameter of the
nerve fiber, and Lz the internodal segment along the nerve. In
Eq. �16�, n�r ,
 , t� is the pore density distribution function
previously defined in Eq. �6�. Since the number of pores is
nonuniform with an angular dependence, the pore resistance
needs to be evaluated across differential stripes of width Rd

�R=nerve fiber radius� and longitudinal length Lz across the
nerve membrane. The overall shunt conductivity Gsh is ob-
tained by adding the spreading resistance at the pore entrance
to the effective pore resistivity. Thus Gsh= �1/Gsh+Rsp�−1

where the pore spreading resistance Rsp=� /2r and is the re-
sistivity of the aqueous medium. This latter is also referred to
as the access resistance �70,71�.

III. RESULTS AND DISCUSSION

A. Action potential propagation without electroporation

Simulation results are first presented on AP propagation
for an unmyelinated fiber in the absence of any nerve elec-
troporation to provide a base line and allow for relative com-
parisons. Idealized conditions, such as uniform diameter
nerves and simple geometric shapes, have been used in our
simulations for simplicity. While the practical details are
more complex, the general trends and qualitative physics dis-
cussed here should hold. Figure 4 shows the time-dependent
potentials at various distinct nodes for a myelinated nerve.
An axon diameter of 23.8 �m was chosen with a specific
resistance of 34.5 � cm and a specific membrane capaci-
tance of 1 �F cm−2. The remaining parameters required in
Eqs. �2�–�4� were assigned values usually reported in the
literature �3,49,50,72�. The triggering excitation for launch-
ing the AP was through a 0.2-ms-long, 0.25-�A pulse at
node 2 of a 200-node section. As seen from Fig. 4, the maxi-
mum voltage at the various nodes is roughly fixed. The tem-
poral shift allows for calculations of the propagation speed v.
Results from several simulations carried out by varying the
nerve diameter d are listed in Table I. The best fit to the
diameter dependent velocity was v=6.4607d0.517. This agrees
well with the analytical predictions of a v�d0.5 dependence
�72�. Though not shown, the velocities in Table I were ob-
tained for AP propagation from a single-shot triggering of the
nerve. For multiple firings, the propagating velocity v was
slightly reduced after the first triggering due to the well-
known refractory period �73,74�. This occurs because a finite
recovery time is required to regain initial equilibrium condi-
tions �ion densities, potentials, etc.� within the nerves follow-
ing an excitation.

Effects of applying an ac voltage for purposes of blocking
a propagating AP are demonstrated next. A 9-kHz interrupt
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FIG. 4. �Color online� Numerical results showing propagating
node potentials in a nonmyelinated nerve following excitation of
node 2.
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signal of amplitude 4.0 �A was applied continuously at node
17. As shown in Fig. 5�a�, an AP is initiated at node 2 and
propagates along both directions of the longitudinal nerve.
The forward-traveling wave, upon reaching node 17, is ef-

fectively blocked. In order to prevent possible self-launch of
any action potentials, the ac signal was terminated after 8 ms
upon successful blockage. Figure 5�b� shows the result if the
ac signal were not terminated, but instead continued until
12 ms. Though an initial block at about 7 ms is achieved, a
secondary AP is generated from node 17 due to the “self-
launch” mechanism of the ac signal itself after a finite delay.
Thus, long-term application of an “ac block signal” is clearly
inappropriate. These results are all in agreement with previ-
ous reports and display anticipated trends.

B. Membrane electroporation effects

Numerical evaluations of membrane pores and their dy-
namical evolution in response to an applied HISDEP were
carried out for obtaining values of the shunt conductance
Gsh. As already discussed, the role of the HISDEP is to trans-
form the neural fiber into a “locally shorted electrical ele-
ment” that can no longer sustain the propagation of an elec-
trical signal. This is analogous, in a loose sense, to the
creation of a leaky pipe that cannot sustain the propagation
of a pressure wave.

The pore density distribution function n�r� obtained from
the Smoluchowski model for a 100-kV/cm, 20-ns HISDEP
and another 200-kV/cm, 50-ns pulse is shown in Fig. 6. A
23.8 �m diameter was assumed for the cylinder. Snapshots
were taken after both pulses had terminated. Increases in
pore density and a shift towards larger pore diameters for the
higher-amplitude, longer-duration pulse is evident and ex-
pected. In either case, pore radii are predicted to be less than
1 nm, underscoring the nanoscale dimensions of the electri-
cally created pores. Since the applied electric field has an
angular nonuniformity, the pore density is expected to be
heterogeneous. This is shown in Fig. 7 with the density plot-
ted as a function of angle and time for a 150-kV/cm external
pulse. The electric pulse shape was taken to have a 10-ns rise

TABLE I. Computed conduction velocity for different axon di-
ameters for unmyelinated fibers.

Diameter �cm� Velocity �cm/ms�

0.0024 0.265957

0.003 0.301205

0.005 0.393701

0.007 0.471698

0.010 0.568182

0.015 0.694444

0.020 0.862069

0.030 0.974659

0.040 1.18765

FIG. 5. �Color online� Simulations showing node voltage versus
time with a 9-kHz ac block applied at node 17 and an AP launched
from node 2. �a� ac signal terminated after 8 ms and �b� ac signal
applied for a longer duration leading to self-launching of an AP.
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time, a 50-ns ON time, and a 10-ns fall time, in keeping with
the local “pulsed-power” experimental systems. From con-
sideration of symmetry, only the 0° �
�90° range has been
shown. Clearly, the largest pore densities are created at 

=0° where the normal field is the strongest. A finite time
delay for poration onset, with gradual density increases in
time, is predicted for the higher angles. The characteristics of
pores formed by such a nanosecond pulse lies in the creation
of the larger density of smaller-sized pores. Other groups
�e.g., Vasilkoski et al. �36�� term this difference as “suprapo-
ration.” Physically, the pore creation rate depends nonlin-
early �almost exponentially� on the transmembrane potential.
Hence, the high-intensity pulses used here facilitate the cre-
ation of a high density of pores very quickly, before the pulse
is turned off. This differs from the conventional, low-voltage
pulses �e.g., Wilhelm et al. �75�� that favor the creation of a
relatively prominent large-radius pore.

A corresponding plot of the transmembrane potential is
given in Fig. 8. At the smaller angles, the voltages quickly
reach values over 1.0 V and subsequently collapse as pora-
tion is initiated. Transmembrane potentials at the higher
angles close to 
�90° show a distinct delay and remain
relatively high given the absence of local poration or the
generation of localized conduction currents. For small
angles, the slight negative values at about 70 ns arise from
the strong displacement currents during pulse turn-off.

Snapshots of pore densities as a function of the angular
position at the end of different pulse durations for a
150-kV/cm electric field are shown in Fig. 9. This brings out
the effect of varying pulse widths. The rise and fall times
were kept at 10 ns, while the on-time was varied. Due to the
relatively high field intensity chosen, there is minimal varia-
tion up to about 
=70°, and almost that entire region of the
membrane is well porated. A sharp drop-off in poration den-
sity is predicted beyond 
=80°. Results showing variations
in pore density with electric field intensity at constant pulse

duration are given in Fig. 10. Again, the sharpest variations
occur at the highest angles, and most of the remaining re-
gions are predicted go be well porated, suggesting an abun-
dant pulse-modulated membrane conductance change.

The summarizing trend from the various simulations was
that the high-intensity pulses were capable of efficiently po-
rating much of the membrane fairly uniformly. Also, the
electrical stimulation created nanopores with a Gaussian-
type spread in radius, rather than large openings as with the
traditional low-intensity, long-duration electroporation
pulses. It was also observed that using pulses as short as
20 ns would be sufficient to achieve the desired objective.
Furthermore, the simulations yielded nearly identical pore
densities for cylinders with variable diameters ranging from
10 �m to 50 �m. Though all of the variable-radius data
have not been shown, the results suggest a fairly robust re-
sponse.

C. Action potential evolution with membrane electroporation

The distributed electrical model of Fig. 1 incorporates the
membrane shunt conductance Gsh and, hence, deviates from

FIG. 7. �Color online� Pore density evolution for a 150-kV/cm
pulse as a function of the angular distribution. The pulse had a rise
time of 10 ns, an ON time of 50 ns, and a fall time of 10 ns.

FIG. 8. �Color online� Transmembrane potential evolution for a
150-kV/cm, 10-ns–50-ns–10-ns pulse as a function of the angle.
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the traditional Hodgkin-Huxley �15� and Huxley-
Frankenhaeuser �16� representations. It was used to simulate
action potential propagation for various values of Gsh for
purposes of determining the minimum value required to
block neural traffic. This was done independent of the elec-
troporation calculation of the previous section and had a two-
fold purpose. �a� It served to confirm and substantiate the
notion of an AP block through changes in membrane conduc-
tance. �b� Second, it yielded minimum thresholds for the
requisite conductance as a function of nerve diameter for AP
blockage. The results obtained are shown in Fig. 11. The
number of nodes �or nerve sections� affected by membrane
poration was taken to be the x variable in Fig. 11. As might
be expected, the requisite conductance threshold for an AP
block decreases with increasing node numbers. Physically,
this implies that a lower degree of poration at a nerve seg-
ment might still be sufficient to block voltage propagation,
provided a larger number of segments contributed to cumu-
latively satisfy the requisite current leakage. However, the
outcome does not scale with the number of segments, and
Fig. 11 suggests that even a relatively low number of nodes

would be sufficient for an AP block. From a practical stand-
point, since such external pulses will be applied through
sharp electrodes, the external electric field is likely to rapidly
fall off with distance. Hence, it would be unrealistic to ex-
pect uniform poration and conductance changes along
nerves. Different segments of a nerve would likely have
varying Gsh values in response to the HISDEP stimulation.
The present calculation demonstrates that even with only a
couple of porated segments, it would be possible to provide
an AP block, provided the requisite change in Gsh can be
attained. Another aspect from Fig. 11 is the monotonic in-
crease in shunt conductance with nerve diameter. Thus, thin-
ner nerves are predicted to be easier for AP blocking, while
thicker nerves would have more stringent HISDEP require-
ments.

Finally, for self-consistent calculations of AP blockage,
the results of pore densities were used to obtained realistic
changes in Gsh through Eq. �16�. These values depend on the
membrane voltage U�t� and were coupled to the HH-
distributed circuit model for self-consistent time-dependent
simulations. The maximum values of Gsh obtained for a
trans-membrane voltage of 104 mV corresponding to the AP
peaks of Fig. 4 for various pulse conditions are given in
Table II. The electric field intensity ranged from
100 to 200 kV/cm, while the pulse duration was from
20 to 100 ns. In all cases, AP blockage was achieved. A rep-
resentative result is shown in Fig. 12. Nerve voltage at vari-
ous nodes versus time is shown for an AP launched from
node 2. A 20-ns, 100-kV/cm HISDEP was taken to be ap-
plied at node 25. Use of the corresponding Gsh obtained
yielded a complete blockage of the action potential.

On a related note, it is perhaps germane to briefly discuss
the effective duration of the AP conduction blockage. As
long as the pores do not reseal, or even shrink considerably
in size and population, the neural traffic can be blocked at a
nerve. Resealing typically would follow an exponential de-
cay �36,43�, with resealing times on the order of seconds or
longer are expected. Hence, HISDEP pulsing with a 1–2-Hz
repetition rate would be sufficient to achieve prolonged
blockage without any deleterious effects of heating-related
tissue damage or self-activated AP launches. Also, in this
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tances required to block action potential propagation as a function
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TABLE II. Maximum conductance Gsh computed at 100 mV for
different field amplitudes and pulse durations of the electroporating
excitation.

Maximum
amplitude
�kV/cm�

Pulse
duration �ns� Conductance �S� AP Block ?

100.0 20.0 3.0777�10−4 Yes

100.0 50.0 3.8265�10−4 Yes

100.0 100.0 4.3744�10−4 Yes

150.0 20.0 5.9528�10−4 Yes

150.0 50.0 7.0608�10−4 Yes

150.0 100.0 7.8385�10−4 Yes

200.0 20.0 7.7152�10−4 Yes

200.0 50.0 9.0424�10−4 Yes
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contribution, we have focused primarily on extremely high
electric fields. It is conceivable that at reduced strengths,
other effects such as the activation of voltage-gated channels
would begin to play a role and influence the neural propaga-
tion characteristics. Studies of such effects will be reported
elsewhere.

IV. CONCLUSIONS

It is shown that high-intensity, short-duration electrical
pulses could provide for a quick-acting, localized, and re-
versible cessation of biological electrical signaling pathways.
This would have obvious applications in neurophysiology,
clinical research, neuromuscular stimulation therapies, and
neuromuscular disruption leading to possible nonlethal bio-
weapons. The concept of arresting action potential propaga-

tion on command through external electrical stimulation is
based on creating a large density of pores on the membrane
of axons. The advantages of such an approach include re-
versibility, suppression of possible self-launched action po-
tentials, and negligible heating or tissue damage.

A self-consistent theoretical analysis has been performed.
The continuum approach based on the Smoluchowski equa-
tion was used to assess membrane electroporation by a high-
intensity external pulse. The angular and temporal aspects
were considered on an equal footing, and details of pore
formation and growth in r space were also included. Changes
in the membrane potential due to conduction current flows
arising from localized electroporation were also considered.

Our results indicate that a sufficiently high density of
pores can be generated by a high-intensity, nanosecond elec-
tric pulse. The resulting change in membrane conductance
then presents an effective “electrical short” to an incident
voltage wave traveling across the nerve. The net effect is that
the local membrane potential at the affected node is unable to
rise significantly. This prevents current injection and activa-
tion of sodium channels downstream, thereby blocking AP
propagation. It has also been shown that poration at a single
neural segment would be sufficient to produce an observable
effect. In reality, more than one segment would be affected.
Also, the influence of external electric fields would be better
assessed by taking account of nonuniformities and spatial
distributions of the potential between nerves and the surface
electrode regions.
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